239 research outputs found

    Predicting the emergence of drug-resistant HSV-2: new predictions

    Get PDF
    BACKGROUND: Mathematical models can be used to predict the emergence and transmission of antiviral resistance. Previously it has been predicted that high usage of antivirals (in immunocompetent populations) to treat Herpes Simplex Virus type 2 (HSV-2) would only lead to fairly low levels of antiviral resistance. The HSV-2 predictions were based upon the assumption that drug-resistant strains of HSV-2 would be less infectious than drug-sensitive strains but that the drug-resistant strains would not be impaired in their ability to reactivate. Recent data suggest that some drug-resistant strains of HSV-2 are likely to be impaired in their ability to reactivate. Objectives: (1) To predict the effect of a high usage of antivirals on the prevalence of drug-resistant HSV-2 under the assumption that drug-resistant strains will be less infectious than drug-sensitive strains of HSV-2 and also have an impaired ability to reactivate. (2) To compare predictions with previous published predictions. METHODS: We generated theoretical drug-resistant HSV-2 strains that were attenuated (in comparison with drug-sensitive strains) in both infectivity and ability to reactivate. We then used a transmission model to predict the emergence and transmission of drug-resistant HSV-2 in the immunocompetent population assuming a high usage of antivirals. RESULTS: Our predictions are an order of magnitude lower than previous predictions; we predict that even after 25 years of high antiviral usage only 5 out of 10,000 immunocompetent individuals will be shedding drug-resistant virus. Furthermore, after 25 years, 52 cases of HSV-2 would have been prevented for each prevalent case of drug-resistant HSV-2. CONCLUSIONS: The predicted levels of drug-resistant HSV-2 for the immunocompetent population are so low that it seems unlikely that cases of drug-resistant HSV-2 will be detected

    Modeling the Impact of Tuberculosis Control Strategies in Highly Endemic Overcrowded Prisons

    Get PDF
    International audienceBACKGROUND: Tuberculosis (TB) in prisons is a major health problem in countries of high and intermediate TB endemicity such as Brazil. For operational reasons, TB control strategies in prisons cannot be compared through population based intervention studies. METHODOLOGY/PRINCIPAL FINDINGS: A mathematical model is proposed to simulate the TB dynamics in prison and evaluate the potential impact on active TB prevalence of several intervention strategies. The TB dynamics with the ongoing program was simulated over a 10 year period in a Rio de Janeiro prison (TB prevalence 4.6 %). Then, a simulation of the DOTS strategy reaching the objective of 70 % of bacteriologically-positive cases detected and 85 % of detected cases cured was performed; this strategy reduced only to 2.8% the average predicted TB prevalence after 5 years. Adding TB detection at entry point to DOTS strategy had no major effect on the predicted active TB prevalence. But, adding further a yearly X-ray mass screening of inmates reduced the predicted active TB prevalence below 1%. Furthermore, according to this model, after applying this strategy during 2 years (three annual screenings), the TB burden would be reduced and the active TB prevalence could be kept at a low level by associating X-ray screening at entry point and DOTS. CONCLUSIONS/SIGNIFICANCE: We have shown that X-ray mass screenings should be considered to control TB in highly endemic prison. Prisons with different levels of TB prevalence could be examined thanks to this model which provides a rational tool for public health deciders

    The Emergence of HIV Transmitted Resistance in Botswana: “When Will the WHO Detection Threshold Be Exceeded?”

    Get PDF
    BACKGROUND: The Botswana antiretroviral program began in 2002 and currently treats 42,000 patients, with a goal of treating 85,000 by 2009. The World Health Organization (WHO) has begun to implement a surveillance system for detecting transmitted resistance that exceeds a threshold of 5%. However, the WHO has not determined when this threshold will be reached. Here we model the Botswana government's treatment plan and predict, to 2009, the likely stochastic evolution of transmitted resistance. METHODS: We developed a model of the stochastic evolution of drug-resistant strains and formulated a birth-death Master equation. We analyzed this equation to obtain an analytical solution of the probabilistic evolutionary trajectory for transmitted resistance, and used treatment and demographic data from Botswana. We determined the temporal dynamics of transmitted resistance as a function of: (i) the transmissibility (i.e., fitness) of the drug-resistant strains that may evolve and (ii) the rate of acquired resistance. RESULTS: Transmitted resistance in Botswana will be unlikely to exceed the WHO's threshold by 2009 even if the rate of acquired resistance is high and the strains that evolve are half as fit as the wild-type strains. However, we also found that transmission of drug-resistant strains in Botswana could increase to ∼15% by 2009 if the drug-resistant strains that evolve are as fit as the wild-type strains. CONCLUSIONS: Transmitted resistance will only be detected by the WHO (by 2009) if the strains that evolve are extremely fit and acquired resistance is high. Initially after a treatment program is begun a threshold lower than 5% should be used; and we advise that predictions should be made before setting a threshold. Our results indicate that it may be several years before the WHO's surveillance system is likely to detect transmitted resistance in other resource-poor countries that have significantly less ambitious treatment programs than Botswana

    Heightened Vulnerability to MDR-TB Epidemics after Controlling Drug-Susceptible TB

    Get PDF
    Prior infection with one strain TB has been linked with diminished likelihood of re-infection by a new strain. This paper attempts to determine the role of declining prevalence of drug-susceptible TB in enabling future epidemics of MDR-TB.A computer simulation of MDR-TB epidemics was developed using an agent-based model platform programmed in NetLogo (See http://mdr.tbtools.org/). Eighty-one scenarios were created, varying levels of treatment quality, diagnostic accuracy, microbial fitness cost, and the degree of immunogenicity elicited by drug-susceptible TB. Outcome measures were the number of independent MDR-TB cases per trial and the proportion of trials resulting in MDR-TB epidemics for a 500 year period after drug therapy for TB is introduced.MDR-TB epidemics propagated more extensively after TB prevalence had fallen. At a case detection rate of 75%, improving therapeutic compliance from 50% to 75% can reduce the probability of an epidemic from 45% to 15%. Paradoxically, improving the case-detection rate from 50% to 75% when compliance with DOT is constant at 75% increases the probability of MDR-TB epidemics from 3% to 45%.The ability of MDR-TB to spread depends on the prevalence of drug-susceptible TB. Immunologic protection conferred by exposure to drug-susceptible TB can be a crucial factor that prevents MDR-TB epidemics when TB treatment is poor. Any single population that successfully reduces its burden of drug-susceptible TB will have reduced herd immunity to externally or internally introduced strains of MDR-TB and can experience heightened vulnerability to an epidemic. Since countries with good TB control may be more vulnerable, their self interest dictates greater promotion of case detection and DOTS implementation in countries with poor control to control their risk of MDR-TB

    Modelling entomological-climatic interactions of Plasmodium falciparum malaria transmission in two Colombian endemic-regions: contributions to a National Malaria Early Warning System

    Get PDF
    BACKGROUND: Malaria has recently re-emerged as a public health burden in Colombia. Although the problem seems to be climate-driven, there remain significant gaps of knowledge in the understanding of the complexity of malaria transmission, which have motivated attempts to develop a comprehensive model. METHODS: The mathematical tool was applied to represent Plasmodium falciparum malaria transmission in two endemic-areas. Entomological exogenous variables were estimated through field campaigns and laboratory experiments. Availability of breeding places was included towards representing fluctuations in vector densities. Diverse scenarios, sensitivity analyses and instabilities cases were considered during experimentation-validation process. RESULTS: Correlation coefficients and mean square errors between observed and modelled incidences reached 0.897–0.668 (P > 0.95) and 0.0002–0.0005, respectively. Temperature became the most relevant climatic parameter driving the final incidence. Accordingly, malaria outbreaks are possible during the favourable epochs following the onset of El Niño warm events. Sporogonic and gonotrophic cycles showed to be the entomological key-variables controlling the transmission potential of mosquitoes' population. Simulation results also showed that seasonality of vector density becomes an important factor towards understanding disease transmission. CONCLUSION: The model constitutes a promising tool to deepen the understanding of the multiple interactions related to malaria transmission conducive to outbreaks. In the foreseeable future it could be implemented as a tool to diagnose possible dynamical patterns of malaria incidence under several scenarios, as well as a decision-making tool for the early detection and control of outbreaks. The model will be also able to be merged with forecasts of El Niño events to provide a National Malaria Early Warning System

    An evaluation of indices for quantifying tuberculosis transmission using genotypes of pathogen isolates

    Get PDF
    BACKGROUND: Infectious diseases are often studied by characterising the population structure of the pathogen using genetic markers. An unresolved problem is the effective quantification of the extent of transmission using genetic variation data from such pathogen isolates. METHODS: It is important that transmission indices reflect the growth of the infectious population as well as account for the mutation rate of the marker and the effects of sampling. That is, while responding to this growth rate, indices should be unresponsive to the sample size and the mutation rate. We use simulation methods taking into account both the mutation and sampling processes to evaluate indices designed to quantify transmission of tuberculosis. RESULTS: Previously proposed indices generally perform inadequately according to the above criteria, with the partial exception of the recently proposed Transmission-Mutation Index. CONCLUSION: Any transmission index needs to take into account mutation of the marker and the effects of sampling. Simple indices are unlikely to capture the full complexity of the underlying processes

    When to Start Antiretroviral Therapy

    Get PDF
    The question of when to start combination antiretroviral therapy for treatment-naïve patients has always been controversial. This is particularly true in the current era, with major guidelines recommending very different treatment strategies. Despite a lack of clarity regarding the optimal time to begin therapy, there has been a recent shift toward earlier initiation. This more aggressive approach is driven by several observations. First, effective viral suppression with therapy can prevent non-AIDS-related morbidity and mortality. Second, therapy can prevent irreversible harm to the human immune system. Third, therapy may prevent transmission of HIV to others, and thus have a potential public health benefit. For patients who are motivated and willing to initiate early treatment, the collective benefits of early therapy may outweigh the well-documented risks of antiretroviral medications
    corecore